Offre de stage

Ultra-fast vision using Spiking Neural Networks

Période :   au

La vision biologique est étonnamment efficace. Pour tirer parti de cette efficacité, l’apprentissage profond et les réseaux neuronaux convolutionnels (CNN) ont récemment permis de réaliser de grandes avancées en matière de vision artificielle par ordinateur. Cependant, ces algorithmes sont aujourd’hui confrontés à de multiples défis : les architectures apprises sont souvent peu interprétables, sont démesurément gourmandes en énergie, n’intègrent généralement pas les informations contextuelles qui semblent parfaitement adaptées à la vision biologique et à la perception humaine.

Le but du stage est de développer un système de vision bio-mimétique en collaboration avec un doctorant au laboratoire.

Description

La vision biologique est étonnamment efficace. Pour tirer parti de cette efficacité, l’apprentissage profond et les réseaux neuronaux convolutionnels (CNN) ont récemment permis de réaliser de grandes avancées en matière de vision artificielle par ordinateur. Cependant, ces algorithmes sont aujourd’hui confrontés à de multiples défis : les architectures apprises sont souvent peu interprétables, sont démesurément gourmandes en énergie, n’intègrent généralement pas les informations contextuelles qui semblent parfaitement adaptées à la vision biologique et à la perception humaine. Aussi ces algorithmes sont relativement lents -à consommation énergétique égale- par rapport à la vision biologique. On pense qu’un facteur majeur de cette rapidité est le fait que l’information est représentée par de courtes impulsions à des moments analogiques – et non discrets. Toutefois, les algorithmes de vision par ordinateur utilisant une telle représentation dans des réseaux de neurones impulsionnels font encore défaut dans la pratique, et son important potentiel est largement sous-exploité. Ce projet, qui est inspiré de la biologie, aborde la question scientifique du développement d’une architecture ultra-rapide de détection et de traitement de scènes visuelles, fonctionnant sur des appareils sans horloge centrale, et visant à valider ce genre d’algorithmes événementiels dans des situations réelles. Plus spécifiquement, le projet développera de nouveaux paradigmes pour une vision d’inspiration biologique, de la détection au traitement, afin d’aider des machines telles que les robots aériens autonomes (UAV), les véhicules autonomes ou les robots à acquérir une compréhension de haut niveau des scènes visuelles.

Profil recherché

Candidates should have experience in the domain of computational neuroscience, physics, engineering or related, and a solid training in machine learning and computer vision.

Établissement d'accueil

Le stage sera effectuée dans l’équipe “NEuronal OPerations in visual TOpographic maps” (NeOpTo) au sein de l’Institut de Neurosciences de la Timone (INT). L’équipe de recherche est dirigée par F. Chavane (DR2, CNRS) et accueille actuellement 4 personnels permanents, 3 post-doctorants et 4 doctorants. Les thématiques de recherche de l’équipe sont centrées sur les opérations neuronales au sein de cartes corticales visuelles. En effet, le long de la hiérarchie corticale, les caractéristiques de bas niveau telles que la position, l’orientation du stimulus visuel (mais aussi la tonalité auditive, le toucher somatosensoriel, etc…) mais aussi les caractéristiques de niveau supérieur (telles que les visages, les points de vue d’objets, etc…) sont représentées topographiquement sur la surface corticale.

Votre avis nous intéresse

Description de la soumission d'un avis

Votre vote :
Votre avis nous intéresse